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Abstract Understanding how the frequency and intensity of extreme precipitation events are changing is
important for regional risk assessments and adaptation planning. Here we use observational data and an
ensemble of climate change model experiments (from the Coupled Model Intercomparison Project Phase 5
(CMIP5)) to examine past and potential future seasonal changes in extreme precipitation event frequency over
the United States. Using the extreme precipitation index as a metric for extreme precipitation change, we find
key differences between models and observations. In particular, the CMIP5 models tend to overestimate the
number of spring events and underestimate the number of summer events. This seasonal shift in the models is
amplified in projections. These results provide a basis for evaluating climate model skill in simulating observed
seasonality and changes in regional extreme precipitation. Additionally, we highlight key sources of variability
and uncertainty that can potentially inform regional impact analyses and adaptation planning.

1. Introduction

Numerous studies show statistically significant increases in frequency and intensity of extreme precipitation over
much of the United States [Karl et al., 1996; Karl and Knight, 1998; Groisman et al., 2004, 2005, 2012; Kunkel et al.,
1999, 2003, 2007, 2012b; Karl et al., 2009; Alexander et al., 2006;Min et al., 2011; Janssen et al., 2014] and the rest of
theworld [Lehmann et al., 2015;Donat et al., 2016]. Climatemodel projections point to continued future increases
in extreme precipitation events over the United States, including areas where mean precipitation is expected to
decrease [Wehner, 2012; Kunkel et al., 2012b;Wuebbles et al., 2013; Janssen et al., 2014]. The physical cause of these
increases in extreme precipitation is due to increases in saturation vapor pressure. The maximum amount of
water in vapor form is governed by the Clausius-Clapeyron equation which calls for a 7% change per degree
Kelvin of temperature change [Trenberth et al., 2003]. Atmospheric water content should increase accordingly,
allowing for heavier precipitation events. However, the rate of precipitation increase over land is not expected
to be as large as increases over the oceans [Allen and Ingram, 2002; Wentz and Schabel, 2000; Trenberth et al.,
2003; Pall et al., 2007; Santer et al., 2007; Willett et al., 2007; Min et al., 2011].

The extreme precipitation index (EPI) [Kunkel et al., 1999, 2003, 2007; Janssen et al., 2014] is an empirical
indicator which measures the frequency of extreme precipitation events for a given duration and expected
return interval. The EPI shows an annual increase over many regions of the United States historically
(1901–2012) and for projections (2006–2100) using the Representative Concentration Pathway (RCP) 4.5
and 8.5 scenarios. Observational trends are captured by simulations from phase 5 of the Coupled Model
Intercomparison Project (CMIP5); however, the simulated magnitude of events in the CMIP5 models tends
to be smaller than observed [Janssen et al., 2014]. Kunkel et al. [2012a, 2012b] provide a historical analysis
of the meteorology associated with observed station extreme events (1908–2009). They isolate distinct
meteorological phenomena over the United States and the (temporal or spatial) trends associated with
observed events. It is found that the frequency of events near frontal boundaries associated with extratropical
cyclones are increasing; they did not determine whether this was due to overall changes in frontal climatology
or changes in the efficiency of extreme event production from fronts.

Wehner [2012] analyzes simulations of seasonal daily extreme precipitation over the contiguous United States
(CONUS) through a comparison of eight North American Regional Climate Change Assessment Program
(NARCCAP) models to two gridded observational data sets. Using several metrics measuring model
performance, the study shows that NARCCAP models vary significantly in their ability to simulate observed
precipitation extremes. While this study has advantages in that it uses higher resolution regional models, it
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is limited by the relatively low number of models and ensembles used compared to that of the suite of mod-
els from the fifth installment of the Coupled Model Intercomparison Project (CMIP5). Wehner [2012] shows
projections with statistically significant increases in mean precipitation for the upper United States during
winter and decreases in the west during summer and southwest in the spring. However, correlations
between seasonal mean and extreme precipitation decreases with rarity of events, thus the same skill found
for mean precipitation cannot be carried over to extremes.

While the aforementioned studies investigate aspects of extreme precipitation, there remains a need for a
comprehensive understanding of the ability of global climate model (GCM) simulations, using a larger
number of ensembles, to capture observed seasonality of extreme precipitation. Here we build on previous
research efforts analyzing extreme precipitation by addressing three key questions: (1) Do CMIP5 models
capture observed seasonality of extreme precipitation? (2) Do CMIP models capture observed trends in
seasonal extreme precipitation event frequency? (3) What do the CMIP5 GCMs project for future seasonal
extreme precipitation frequency? This study provides a regional analysis of observed trends and seasonality
of extreme precipitation frequency over the United States from 1901 to 2014 using the EPI. We assess the
ability of GCMs to simulate the seasonality of the EPI using the entire suite of CMIP5 models. Additionally
we explore the ability of CMIP5models to capture observed natural variability of the EPI. Trends in projections
of seasonal extreme precipitation event frequency over the contiguous United States (CONUS) are also
investigated using the RCP 8.5 for the suite of CMIP5 models.

2. Data

Observed daily precipitation data are from the U.S. Cooperative Observer Network, as included in the Global
Historical Climate Network-Daily data set from the National Climatic Data Center. The data are updated from
Janssen et al. [2014] and now run from 1901 to 2014 with an additional 40 stations for a total of 766 stations
over CONUS. When used for comparison with historical CMIP5 model simulations, the observational time
period used is 1901–2005 due to model simulations ending in 2005. The data are quality control tested
and corrected by Kunkel et al. [2005]; they identified one major issue which is a shift from predominantly
afternoon observations in the early part of the record to mainly morning observations in the more recent
record but this is not known to cause biases in the extremes of precipitation. Precipitation data used in this
study are composed of liquid or liquid water equivalent precipitation. While prior studies show that about 2%
of extreme precipitation events are considered either partial or complete snowfall [Kunkel et al., 2012a,
2012b], we do not differentiate between snow and rain events in this analysis.

We use a total of 27 different models for the hindcast analysis and 21 different models for the projections
[Taylor et al., 2009, 2012]. One drawback in using CMIP5 model output is the mismatch between the historical
modeled hindcast record (1901–2005) and the observations time range (1901–2014). Projections are forced
by the RCP 8.5 scenario for the time range of 2006–2100. Each RCP scenario makes different assumptions for
greenhouse gas concentrations and other factors which affect the Earth’s climate system. Extensive details on
the RCPs can be found inMoss et al. [2010] and Van Vuuren et al. [2011]. Here we utilize RCP 8.5 which serves
as high and emission scenario.

We present intermodel comparisons in which we analyze a combination of single simulations from each dif-
ferent model (totaling 27 simulations for hindcasts and 21 for projections) as well as all available ensemble
members for all models (totaling 94 simulations for hindcasts and 51 simulations for projections). The models
used in this analysis are referenced in the supporting information.

3. Methodology

The EPI utilizes station specific thresholds rather than predetermined threshold amounts which results in
equal weighting of stations regardless of their extreme precipitation climatology. We examine events of a
2 day duration exceeding a station-specific threshold for a 5 year return interval. Larger return intervals show
similar results annually [Janssen et al., 2014]. A station is considered usable when at least 90% of the daily data
is available in a time series. Any given year in a station time series is used only if at least 300 days of data are
available [Janssen et al., 2014]. All 766 stations are available after this process. It should be noted that with a
1° grid spacing, and only 766 reporting stations, some grid cells will have zero reporting stations. This
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occurs most frequently in the western U.S. For the seasonal analysis, every season is required to have at least
75days of usable data. It is unusual for these criteria to not be met. For example, when considering the
CONUS, from 1901 to 2005, events that meet the criteria for winter spring and fall all equal or round to 100%.
For summer, 97.2% of the events meet the criteria. If these conditions are not met, the year, season, and/or
station are ignored in the analysis. Seasons are defined as follows: winter (December-January-February), spring
(March-April-May), summer (June-July-August), and fall (September-October-November). For any given winter,
the December from the previous year is used. For regional and national analyses, station event time series are
averaged for 1° latitude×1° longitude grid cells.

Stations are initially split into regions via state identifiers. The number of events per station is found as follows:
First the number of events (N) is calculated by taking the length of the time series in years and dividing by the
average return period (i.e., 5 years). For any given station, the largest magnitude event in the time series is
counted or “flagged” and both year and season of occurrence are recorded. The event is ranked as the largest,
and those days are subsequently removed from the time series. Then, the next largest event is flagged, year
and season recorded, and again removed. This continues in an iterative fashion until N events have been
flagged, counted, and removed from the time series. Annual and seasonal time series of the frequency of
extreme precipitation events are constructed as counts of these N events by year. These counts, split up by
season, are averaged over all the stations contained in each grid cell giving the average time series for each
grid cell for each season. The grid cells are then averaged over each region and the entire CONUS for every
season. This process gives the frequency of extreme precipitation events for each season (EPI), and adding each
season gives the annual frequency of events. Statistical significance (usually to the 95% confidence level) is tested
by taking a linear regression fit to a Poisson’s distribution for a given time series for each region.

For CMIP5 model simulations, the seasonal 2 day 5 year EPI is calculated in the same manner as observations.
We apply four different ensemble averaging approaches in order to assess the robustness of the results. In
the main text, we highlight the results using multimodel ensemble means that include all available

Figure 1. Observation-based, fractional contribution of average seasonal EPI to the average annual EPI for the time period
of 1901–2005. Numbers are the average fractional contribution and correspond to color of respective regions.

Geophysical Research Letters 10.1002/2016GL069151

JANSSEN ET AL. EXTREME PRECIPITATION IN CMIP5 5387



simulations. In the supporting information, we include additional results based on the multimodel ensemble
mean using a single simulation from all available models. We also repeat these analyses using the ensemble
median based on both single-member and multimember ensemble approaches described above (see sup-
porting information for more details). Because CMIP5 simulations end in 2005, observation-based EPI is recal-
culated for 1901–2005 to compare model simulations.

RCP-forced CMIP5 projections are analyzed for each season using RCP 8.5. This index follows a slightly differ-
ent procedure than the historical EPI calculation. The top N events from 2006 to 2100 are found for a 2 day
5 year return based on thresholds determined using the historical simulations. For each historical model
EPI time series, the smallest Nth event found for each grid cell is set as the threshold amount for the corre-
sponding model and ensemble. Then the top N events that fall above that threshold for each time series
are found in the same iterative manner used previously for each ensemble. The season and year of occur-
rence are recorded to find the seasonal EPI for projections. The regional EPI is calculated for each simulation
by averaging over grid cells. The ensemble mean is then found across all simulations. For the supporting
information, the methods match those of the historical simulations.

The ratio of the seasonal to annual EPI is used to examine seasonality for each region and the CONUS for historical
models, observations, and projections. For observations, the EPI was recalculated for the time period of 1901–2005
in order to compare to models. Two methods comparing models to observations are used. The first method
involves averaging over each regional time series of the EPI for each season and the annual. Then we calculate
the fractional contribution to the annual for models and observations. This process is repeated using the other
three techniques outlined (see supporting information). The second method consists of finding correlation
coefficients between model median time series and observational time series. First, the fractional contribu-
tion of seasonal to annual, for each year, is calculated for the entire time series of 1901–2005. Then correla-
tion coefficients are calculated, comparing observations to model mean fractions. Through the use of these
two methods we assess the ability of CMIP5 simulations to capture observed seasonality in the EPI.

Figure 2. The model mean fractional contribution of average seasonal EPI to the average annual EPI for CMIP5 simulations.
Numbers are the average fractional contribution and correspond to color of respective regions.
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4. Results and Discussion

Examining overall seasonal contribution to the annual, Figure 1 shows the average fractional EPI contribution
to the annual for each season regionally. Summer provides the highest contribution to annual EPI for the cen-
tral and northeastern regions of the United States. During the fall, we see moderate contributions in all
regions. Winter is the smallest for all regions aside from the west with a maximum contribution in the
northwest over all seasons.

We analyze seasonal extremeprecipitation event frequency trends using the EPI from1901 to 2014 (see supporting
information). We find that midwestern summer dominates the contribution to the annual for the EPI with a slight
increasing trend overall. During the fall, there is a recent increase in contribution to annual in the eastern
United States, especially the southeast. Winter provides a large contribution in the west, particularly the
northwest. This is expected, as the western United States receives the bulk of their precipitation during
the winter [Higgins et al., 2000 and Kunkel et al., 2012a, 2012b]. We find that none of the seasonal trends
are statistically significant for any region using a Poisson’s distribution significance test. However, when
examined by grid point, many locations show statistically significant trends to the 95th percent confidence
interval for seasonal EPI, tested by taking a linear regression fit to a Poisson’s distribution.

Seasonal EPI simulations show a smaller magnitude compared to observations, while still capturing any
observed trends, similar to the annual result of Janssen et al. [2014]. However, some regions show no
observed or simulated seasonal trends at all. Figure 2 shows the fractional contribution of seasonal EPI to
the annual for the mean of CMIP5 models. We see general agreement with observations during the winter,
although models increase events in most regions. Sheffield et al. [2013] show that during winter, several of
the higher-resolution CMIP5 models produce divergence that is too strong along the U.S. coasts and precipi-
tation is overestimated by these models. Thus, this overestimation could be due to model differences in the
underlying large-scale dynamics.

The largest difference between models and observations is the reduction of events in the models during the
summer months for every region of the CONUS. Themodels subsequently increase events in the spring for all

Figure 3. Correlation coefficients comparing the fractional contribution of seasonal to annual EPI. The time series
(1901–2005) are used for observational and model-based EPI.
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regions, except the west, indicating that the models are simulating more extreme precipitation events earlier
in the warm season. There are several possible reasons for this shift in the models. Global models used in
CMIP5 do not typically resolve orographic features such as mountain ranges, which for the central United
States are an important contribution to the environmental conditions which produce extreme precipitation
events. Sheffield et al. [2013] find that even for five higher-resolution CMIP5 models, the strong convergence
over the Rockies and Mexican Plateau is not well captured and is associated with a low bias in mean
precipitation found for those regions. Other contributing factors could be the ability of the models to
simulate convection and mesoscale processes associated with tropical cyclones and fronts. In the latter case,
Kunkel et al. [2012a, 2012b] found that fronts were an important cause of summer heavy events, even in the
southeast U.S. While we are not aware of studies examining summer fronts, these features may not be
simulated adequately by global models because the gradients and associated low-level convergence are
generally quite weak in the summer, although adequate to trigger convection in the conditionally unstable
atmosphere typical of summer in the eastern U.S. Models tend to agree with observations in the fall with
small differences between regions, the largest being an increase in models in the southwest.

Figure 3 shows correlation coefficients comparing the fractional contribution time series between the
multimodel ensemble mean (94 total simulations from 27 different models) and observations for each region
and season. The northwestern region shows the best agreement with observations, particularly in the spring
and fall. The models are particularly well correlated to observations during the spring for the western United
States. This largely matches what we see in the fractional contributionmaps and the EPI time series. During sum-
mer, themidwest shows positive correlation between themodels and observations; however, the averagemodel
contribution for summer in themidwest shows an underestimation by about 16%. This suggests that the models
capture time series trends while failing to capture the average contribution to the annual for this region during
the summer. This is a common occurrence for several regions during various seasons.

Figure 4. Model mean projections of the fractional contribution of average seasonal EPI to the average annual EPI using
the RCP 8.5 scenario. Numbers are the fractional contribution and correspond to color of respective regions.
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Projections of average seasonal contributions to annual for the EPI (2006–2100) are shown in Figure 4. The
winter contribution increases for all regions compared to both historical models and observations.
Projected changes during the fall are relatively small over all regions of the United States. There is a distinct
shift of events from summer to spring in projections when compared to observations. Projections show
decreases in all regions during summer and subsequent increases in spring for all but the western regions.
Summer contributions decrease at least slightly for all regions when compared to historical model means.
There are increases in the spring when compared to historical models for the North Great Plains, midwest
and northeast regions, and very small increases in the west, but the CMIP5 historical simulations place more
events in spring and less in summer compared to observations. Thus, it is important to consider that these
projected decreases in summer and increases in spring could be a product of the models and not due to
the underlying physics. Because of the historical shift in the models, projections could be amplifying any real
shift from summer to spring, causing an overproduction of events in spring and an underproduction in sum-
mer. This result may provide important constraints for regional impact analyses (e.g., agriculture) that use
seasonal climate information from CMIP5 style models.

Internal variability represents the year-to-year “natural” variations in observed and modeled climate variables
within the Earth’s system [Hawkins and Sutton, 2009; Flato et al., 2013; Collins et al., 2013; Sriver et al., 2015], which
is largely filtered out when averaging over multiple times series. Here we extend our CMIP ensemble analysis to
characterize the representation of internal variability of EPI within different models. Figure 5 shows histogram
plots of model variances of the annual EPI for each region using a single simulation for each model. We find that
most models tend to produce natural variability that is larger than observations for all regions. Large variances in
the modeled annual EPI indicate that models cluster extreme precipitation events together while observations
are smoother in time. A potential cause for this result is the underrepresentation of precipitation intensity in
climate models compared to observations [Sriver et al., 2015]. These results suggests that individually the models
do a poor job capturing observed natural variability and that structural model differences and natural variability
can both potentially influence interpretations about projected seasonal changes in extreme precipitation.

Figure 5. EPI variances for each CMIP5 model plotted as histograms. We calculate variance using a single historical simula-
tion (1901–2005) from each different model. The bold black line represents observation-based EPI variance.
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5. Conclusions

Observational EPI shows that seasonal contribution to annual is maximized in the summer for most regions.
Historically, winter is at a minimum for most regions with the exception of the western United States.
Historical CMIP5 simulations of seasonal contributions to the annual EPI show a shift of events from summer
to spring for most regions when compared to observations. During the winter, the models capture the small
contribution for most regions and the larger contributions for the western regions, including the southeast
with a slight overproduction in most regions.

A future increase in seasonal contribution of the EPI during winter is projected for most regions. There is a
shift in event frequency from summer to spring for most regions when compared to historical model and
observation-based EPI. It is difficult to interpret the physical relevance of this projected seasonal shift given
the seasonal differences in EPI between models and observations for the historical period. When considering
single simulations from each model, we find that most models tend to overestimate internal variability in EPI
compared to observations. Overall the CMIP5 ensemble as a whole generally captures seasonal contributions
to annual EPI, with several key apparent model-data discrepancies. Results point to EPI as a useful diagnostic
for examining extreme precipitation in Earth system models, which can have important implications for
analyzing and interpreting projected changes in seasonal extreme precipitation event frequency.
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